Abstract

In head and neck radiation therapy, the presence of dental restorations can increase unwanted neutron dose to the patient. This study aimed at the measurement of secondary neutron production induced by irradiation of a healthy tooth, Amalgam, Ni-Cr alloy and Ceramco with a photon beam generated in the treatment head of a Siemens Primus linac at a voltage of 15 MV. The irradiation field amounted to 10 × 10 cm2. The measurements of thermal and fast-neutron equivalent doses were performed by means of CR-39 detectors positioned in various depths of a Perspex (polymethyl methacrylate) phantom as at open field as at presence of corresponding dental restorations. The general trend of thermal neutron as well as fast-neutron equivalent dose behind the denture samples reveals their reduction with increasing depth. The maximum values of thermal-neutron dose related to Amalgam, Ceramco and Ni-Cr alloy amount to 1.45 mSv/100 MU, 1.38 mSv/100 MU and 1.32 mSv/100 MU, whereas the corresponding maximum values of fast-neutron dose at the depth of 1.8 cm amount to 0.19 mSv/100 MU, 1.04 mSv/100 MU and 0.97 mSv/100 MU, respectively. The present study investigates the neutron dose accompanied with radiotherapy. It is recommended that attempts have to be made to ensure that dental restorations are not in the path of the primary high-energy photon beam. Considering treatment planning, the guidelines of radiation protection should be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.