Abstract

The present study has been conducted to observe the details of heat transfer under pulsating pressure and oscillating flow in a pulse tube. An experimental apparatus was fabricated to measure the gas temperature, wall temperature, pressure, and the instantaneous heat flux inside a pulse tube. The measured gas temperature and heat flux must be corrected to compensate for their finite time constant under oscillating flow conditions. In experiments performed from 1 Hz to 3 Hz, the phase difference between the instantaneous heat flux and the gas-wall temperature difference was clearly observed. The experimental heat fluxes were compared to theoretical correlations such as the Complex Nusselt Number Model (CNNM) and the Variable Coefficient Model (VCM). In general, the absolute value of the heat flux predicted by the CNNM was greater than that of the VCM. The experiment confirmed the validity of the VCM for the instantaneous heat flux under the pulsating pressure and oscillating flow in the warm end of the basic pulse tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.