Abstract

In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50, 692lReDl959) placed in the TBL's outer, logarithmic, and buffer layer, were measured using time-resolved tomo-PIV. Increasing wall proximity increasingly tilted the mean recirculating wake away from the wall implying a negative lift force. Mean velocity deficit recovery scaled with the mean wake length with minor effects of wall proximity. Farthest from the wall, streamwise Reynolds normal stresses encircled the mean wake as an axisymmetric tubular shell, while transverse and wall-normal stresses extended off its tip as axisymmetric tapered cones. Wall proximity removed axisymmetry and attenuated values near the wall. Reynolds shear stresses were distributed as antisymmetric lobes extending off the mean wake displaying increasing values with reducing sphere-wall gap. Instantaneous snapshots revealed a wake densely populated by archlike vortices with shedding frequencies lower than for a sphere in uniform flow except in the buffer layer. Tilting of the wake away from the wall resulted from self-induced motion of shed hairpinlike vortices whose symmetry plane was increasingly wall-normal oriented with reduced sphere-wall gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call