Abstract

We study the elastic enhancement factor and the two-point correlation function of the scattering matrix obtained from measurements of reflection and transmission spectra of a three-dimensional (3D) wave-chaotic microwave cavity in regions of moderate and large absorption. They are used to identify the degree of chaoticity of the system in the presence of strongly overlapping resonances, where other measures such as short- and long-range level correlations cannot be applied. The average value of the experimentally determined elastic enhancement factor for two scattering channels agrees well with random-matrix theory predictions for quantum chaotic systems, thus corroborating that the 3D microwave cavity exhibits the features of a fully chaotic system with preserved time-reversal invariance. To confirm this finding we analyzed spectral properties in the frequency range of lowest achievable absorption using missing-level statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call