Abstract

Abstract The Flow-Induced Motions (FIM) is an essential topic on multi-column platforms due to the effect on the mooring line fatigue life. Vortex-Induced Motions (VIM) or galloping behavior can be observed for an array of four columns with square sections. The presence of pontoons showed to be important for changing the flow around the array and promoting different amplitude behaviors of the motions in the transverse direction mainly. This article aims to understand the effect of the presence of four pontoons on the FIM of a semi-submersible platform (SS) with four square section columns. Model tests of a floating system supported elastically utilizing four springs were performed in a towing tank. Five different pontoon ratios were tested, namely P/L = 0, 0.25, 0.50, 0.75, and 1.00; where P is the pontoon height (the dimension in the vertical direction), and L is the length of the square column face. The draft condition was kept constant as H/L = 1.5; where H is the draft of the platform. The spacing ratio of the columns was S/L = 4; where S is the distance between column centers. Two incidence angles of the current were carried out, namely 0 and 45 degrees. The amplitudes in the transverse direction (direction perpendicular to the incidence current) decreased by increasing the pontoon ratio for 0 and 45-deg incidences. The pontoons positioned aligned to the flow significantly reduced the amplitudes in the transverse direction since the pontoon presence in this position modified the incident wake in the downstream columns. The pontoon presence needs to be well investigated to choose the best condition to avoid raising the FIM or mitigating the FIM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call