Abstract
Cohesion and internal friction angle are the two material parameters used in the Coulomb model to predict rock failure in many rock engineering applications. Although these two parameters have been extensively quantified under static conditions using the direct shear or the triaxial compression methods, the effect of dynamic loading on these parameters is not yet clear. A dynamic punch shear method was proposed by Huang et al. (Rev Sci Instrum 82:053901. https://doi.org/10.1063/1.3585983 , 2011) to measure the dynamic cohesion of rocks, and the dependence of cohesion on the loading rate has been revealed. To further investigate the effect of dynamic loading on the internal friction angle and thus the complete dynamic shear response of rocks, this method is extended in this study to include the normal stress by applying lateral confinement to a disc specimen. The confinement is realized by enclosing the specimen assembly in a 1.5 inch diameter Hoek cell. The dynamic load is applied by a split Hopkinson pressure bar system, which is modified to ensure that the specimen assembly remains intact in the Hoek cell during pressurization by applying a static axial pre-stress. Three groups of green sandstone specimens under confinements of 0, 10 and 20 MPa are tested with different loading rates. The results show that the dynamic shear strength exhibits significant rate dependency and it thus increases with the loading rate and the normal stress. The dynamic cohesion increases with the loading rate, while the internal friction angle remains constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.