Abstract

The density and viscosity of $$n$$ -heptane have been simultaneously measured over the temperature range from 298 K to 470 K and at pressures up to 245 MPa using the hydrostatic weighing and falling-body techniques, respectively. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95 % confidence level with a coverage factor of $$k= 2$$ is estimated to be 0.15 % to 0.30 %, 0.05 %, 0.02 K, and 1.5 % to 2.0 % (depending on temperature and pressure ranges), respectively. The measured densities were used to develop a Tait-type equation of state for liquid $$n$$ -heptane. Theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations with pressure-dependent coefficients were used to describe the temperature and pressure dependences of the measured viscosities for liquid $$n$$ -heptane. The measured values of the density and viscosity were compared in detail with reported data and with the values calculated from a reference EOS and correlation models for the viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.