Abstract

The system CaSO(4)-H(2)O, characterized by the three dehydration reactions gypsum-anhydrite, gypsum-bassanite, and bassanite-anhydrite, was reexamined by in situ differential pressure analysis in the temperature range of 60-350 degrees C up to 3.5 GPa pressure. The investigation revealed a fine structure in the dehydration boundaries of gypsum-bassanite and bassanite-anhydrite, each characterized by three inflections at 0.9-1.0, 1.9-2.0, and 2.6-28 GPa. In addition, the phase transition of anhydrite high pressure anhydrite (monazite structure) was established for the first time at high P-T conditions intersecting the bassanite-anhydrite dehydration boundary at 2.15 GPa250 degrees C. Furthermore, the triple point gypsum-bassanite-anhydrite was redetermined with 235 MPa80.5 degrees C. The evaluation of the gypsum-bassanite dehydration boundary with respect to the volume and entropy change of the reaction, DeltaV(react) and DeltaS(react), by means of the Clausius-Clapeyron relation yields for the entropy parameter an unusually large increase over the range of the noted inflections. This is interpreted as anomalous entropy behavior of H(2)O related presumably to a dramatic increase in fluctuations of the hydrogen network of the liquid leading possibly into a new structural state. The effect is strongly related to the three noted pressure levels of 0.9-1.0, 1.9-2.0, and 2.6-28 GPa. In a synopsis of data including also a previous high pressure study in the temperature range between 0 and 80 degrees C, a tentative P-T diagram of H(2)O is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call