Abstract

Abstract: In this paper, physical parameters for the creep constitutive equations of the low alloy ferritic steel 1.25Cr0.5Mo have been determined using experimental data. This alloy is used mostly in power generation and petrochemical industries because of its high temperature creep resistance. Test samples have been obtained from a new super‐heater pipe wall of a steam‐generating boiler in Tabriz Petrochemical Plant according to the ASTM standards. By conducting creep rupture tests for 1.25Cr0.5Mo steel, creep behaviour and creep‐rupture properties were examined for this material. Creep rupture tests have been carried out at four temperatures of 700, 725, 750 and 800 °C, under applied uni‐axial stresses of 30, 35, 40 and 50 MPa. The experimental data have been used to obtain the constitutive parameters using numerical optimisation techniques. Also the temperature and stress dependency of the creep lifetime for this alloy has been investigated using Larson–Miller and Monkman–Grant parameters. The results show good agreement with other test data such as ASTM and API. Finally, these constitutive equations have been used to study the creep behaviour of the super‐heater pipe. The results show that the super‐heater tube has been over designed in terms of the creep lifetime and this is in accordance with the in‐plant observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call