Abstract
BackgroundTranscranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. ObjectiveThreshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the cerebral cortex. Patients and MethodsData of 10 patients (6f, 53 ± 11 years) were analyzed. Motor evoked potentials were elicited by constant current stimulation with corkscrew type electrodes (CS) at C3 and C4 in line with standard transcranial electric stimulation. A monopolar anodal ball tip shaped probe was used for all other measurements being performed at the level of the skin, dura and cortex, as well as within the skull by stepwise performed burr holes close to C3 resp. C4. ResultsAverage stimulation intensity, corresponding voltage and impedance for muscle MEPs at current motor threshold (CMT) were recorded: CS 54 ± 23 mA (mean ± SD), 38 ± 21 V, 686 ± 146 Ω; with the monopolar probe on skin 55 ± 28 mA, 100 ± 44 V, 1911 ± 683 Ω and scalp 59 ± 32 mA, 56 ± 28 V, 1010 ± 402 Ω; within the skull bone: outer compact layer 33 ± 23 mA, 91 ± 53 V, 3734 ± 2793 Ω; spongiform layer 33 ± 23 mA, 70 ± 44 V, 2347 ± 1327 Ω; inner compact layer (ICL) 28 ± 19 mA, 48 ± 23 V, 2103 ± 1498 Ω; on dura 25 ± 12 mA, 17 ± 12 V, 643 ± 244 Ω and cortex 14 ± 6 mA, 11 ± 5 V, 859 ± 300 Ω. CMTs were only significantly different for CS (P = 0.02) and for the monopolar probe between the cortex and ICL (P = 0.03), scalp (P = 0.01) or skin (P = 0.01) and between ICL and CS (P ≤ 0.01) or skin (P ≤ 0.01). ConclusionThe mean stimulation current of the CMT along the extracranial to intracranial anodal trajectory followed a stepwise reduction. VMT was strongly dependent on electrode impedance. CMT within the skull layers was noted to have relative strong shunting currents in scalp layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.