Abstract
In the present work, we study the Timepix2 pixels’ high energy response in the so-called adaptive gain mode. Therefore, Timepix2 with a 500 μm thick silicon sensor was irradiated with protons of energies in the range from 400 keV to 2 MeV and α-particles of 5.5 MeV from 241Am. A novel method was developed to determine the energy deposit in single pixels of particle imprints, which are spread out over a set of neighbor pixels (cluster). We show that each pixel is capable of measuring the deposited energy from 4 keV up to ∼3.2 MeV. Reconstructing the full energy content of the clusters, we found relative energy resolutions () better than 2.7% and better than 4% for proton and α-particle data, respectively. In a simple experiment with a 5.5 MeV α-particle source, we demonstrate that energy losses in thin (organic) specimen can be spatially resolved, mapping out sample thickness variations, with a resolution around 1–2 μm, across the sensor area. The inherent spatial resolution of the device was determined to be 350 nm in the best case.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.