Abstract

In this work, we experimentally investigated the dynamics of vapor–gas bubbles arising in distilled water under the action of ultrasound (US), near and on the surface of solid plates with various surface properties. In the experiments, we used the plates made of Teflon, acrylic glass, and amorphous quartz, with various hydrophobic properties (contact angle). The experiments showed a significant effect of surface properties on the dynamics of bubbles oscillating near and on a solid surface under the influence of ultrasound. In the case of a hydrophobic surface (Teflon), steady attachment of bubbles is observed, the surface area covered by the bubbles grows according to a law close to linear, and then it reaches a plateau. For less hydrophobic surfaces, the drift and rising of bubbles along the plates are observed, as a result of which, the area covered by the bubbles grows less rapidly over time. When the ultrasound is switched off some bubbles located near and on the surface of the acrylic plate float and drag other bubbles with them, differ from the surface of Teflon. This behavior of the bubbles limits both their maximum possible diameter and the maximum solid surface area covered by the bubble. In addition, experiments showed a significant effect of the concentration of gas dissolved in a liquid on the process of bubble formation: a decrease in gas concentration led to a qualitative change in the time dependence of the surface area covered by the bubbles; in the case of long-term degassing of water using ultrasound, the formation of extended bubble clusters on all solid surfaces becomes impossible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.