Abstract
The flow between two concentric cylinders with the inner one rotating and with an imposed radial temperature gradient is studied using digital particle image velocimetry (DPIV) method. Four models of the outer cylinder without and with different numbers of slits (6, 9 and 18) are considered, and the radius ratio and aspect ratio of each models were 0.825 and 48, respectively. The flow regime in the Taylor-Couette flow was studied by increasing the Reynolds number. The results showed that smaller number of slits has no obvious effect on the transition process, which only change the shape of the vortex, and the transition to turbulent Taylor vortex is accelerated as the number of slit increases in both isothermal and non-isothermal conditions. It is also shown that the presence of temperature gradient increased the flow instability obviously as the Froude number larger than 0.0045.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.