Abstract

The fractional penetration of submicrometer particles through five high-efficiency glass fiber filters, one composite fiber filter, and two membrane filters was measured for particles of 0.004–0.42-μm diameter at filter face velocities ranging from 0.5 to 20 cm/s. The glass fiber filters all had approximately the same thickness and weight per unit area, and were rated 93% to 99.999% efficient using the conventional 0.3-μm dioctyl phthalate (DOP) test. The challenge aerosols were electrically classified monodisperse DOP in the diameter range of 0.032–0.42 μm, and polydisperse silver condensation aerosols having diameters of ∼ 0.004–0.01 μm. Aerosol penetration through these media was found to be generally consistent with current theory for collection by diffusion and interception over the particle size and velocity range studied. Using a filter figure of merit calculated for penetration by 0.1- and 0.3-μm particles to facilitate comparison, all of the filters except one tetrafluoroethylene membrane filter ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.