Abstract

Steady-state nonlinear motion confinement is experimentally studied in a system of weakly coupled cantilever beams with active stiffness nonlinearities. Quasistatic swept-sine tests are performed by periodically forcing one of the beams at frequencies close to the first two closely spaced modes of the system, and experimental nonlinear frequency response curves for certain nonlinearity levels are generated. Of particular interest is the detection of strongly localized steady-state motions, wherein vibrational energy becomes spatially confined mainly to the directly excited beam. Such motions exist in neighborhoods of strongly localized antiphase nonlinear normal modes (NNMs) which bifurcate from a spatially extended NNM of the system. Steady-state nonlinear motion confinement is an essentially nonlinear phenomenon with no counterpart in linear theory, and can be implemented in vibration and shock isolation designs of mechanical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.