Abstract

The objective of this paper is to investigate the spray macroscopic characteristics of biodiesel, diethyl carbonate (DEC)-biodiesel blends and diesel fuel based on a common-rail injection system. The spray tip penetration, spray cone angle and the spray projected area were measured through a high-speed photography method. The experimental results reveal that injection pressure and ambient pressure have significant effects on the spray characteristics. Higher injection pressure makes the spray tip penetration increase, while higher back pressure inside the chamber leads to the enlargement of the spray cone angle. The addition of DEC causes the blends fuels to have a shorter penetration and larger spray projected area, which reveals the potential capacity to improve the atomization process compared with biodiesel. The estimation of spray droplet size indicates that DEC30 generates a smaller Sauter mean diameter (SMD) because of its lower surface tension and viscosity. Model predictions were illustrated and compared with current work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.