Abstract

The time-resolved photoluminescence of a Bragg structure formed by InAs single-layer quantum wells in a GaAs matrix is investigated experimentally. The comparison of photoluminescence spectra recorded from the edge and the surface of the sample indicates that Bragg ordering of the quantum wells leads to substantial modification of the spectra, in particular, to the appearance of additional modes. The spectrum recorded at the edge of the sample features a single line corresponding to the exciton ground state. In the spectrum recorded at the surface, an additional line whose frequency and propagation angle correspond to the Bragg condition for quantum wells, appears at high excitation levels. The calculation of the modal Purcell factor explains the fact that spontaneous emission is enhanced only for specific propagation angles and frequencies, rather than for all angles and frequencies satisfying the Bragg condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call