Abstract

Spontaneous-emission enhancement in a Tamm plasmon microcavity with an active region with organic material 4.4'-bis(N-carbazolyl)-1.1'-biphenyl (CBP) is theoretically and experimentally studied. The microcavity consisted of a Bragg reflector made of silicon oxide and tantalum oxide, over which CBP and silver layers are applied. The dependences of the Purcell modal factor on the emission direction and frequency, as well as the Purcell factor spectrum are calculated. The emission and fluorescence decay spectra in time are measured in the ultraviolet range. It is found that the probability of spontaneous emission increases and the maximum Purcell factor reaches three at frequencies corresponding to eigenmodes of the Tamm plasmon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.