Abstract

We experimentally observed the emission of phase-matched resonant radiation in the form of solitonic dispersive wave in a fabricated photonic crystal fiber by pumping picosecond and femtosecond pulses close to zero-dispersion wavelength in normal dispersion regime. The generation of such phase matched radiation does not require a soliton to be formed and red-shifted in nature. Shock front from the leading edge of the input pump initiates the resonant radiation. The radiation develops in the anomalous dispersion domain and found to be confined both in spectral and temporal domain. The resonance mechanism can be well explained from the numerical simulation governed by generalized nonlinear Schrodinger equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call