Abstract

The crystallization kinetics of polypropylene was observed during shear and after shear experiments under isothermal condition. The crystallizations were performed in a plate-plate and a fiber pull-out device. The nucleation density, the crystalline growth and the overall kinetics were measured and compared with data obtained in a similar way but during static experiments. The morphologies are spherulitic and formed from nuclei which seem to be randomly distributed. α-phase spherulites are always observed but with a nucleation density and a growth rate which depend on shearrate. The nucleation density is strongly enhanced by shear and acts as the main factor on the overall kinetics. The overall kinetics can be analyzed with a two-step Avrami model, where an Avrami exponentn1 with a very high value is always observed first after shear and a more usual parametern2 for the subsequent crystallization period. This high value ofn1 seems to be related to the strong enhancement of nucleation density. The growth rate increases with the shear-rate, but the basic growth mechanisms do not seem to be modified. For crystallizations after shear the growth rate decreases with a long-time delay after shear but not down to the static value. The effect is characteristic of a partial relaxation of chain orientation after shear but with a very unusual time constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.