Abstract

Bearing capacity calculation is an important part of shallow foundation design. The expressions for the shape and depth factors available in the literature for bearing capacity calculation are mostly empirical and are based on results obtained using limit analysis or the method of characteristics assuming a soil that is perfectly plastic following an associated flow rule. This paper presents the results of an experimental program in which load tests were performed on model strip and square footings in silica sand prepared inside a half-cylindrical calibration chamber with a transparent visualization window. The results obtained from the model footing load tests show a significant dependence of footing penetration resistance on embedment depth. The load test results were subsequently used to determine experimentally the shape and depth factors for model strip and square footings in sand. To obtain the displacement and strain fields in the sand domain, the digital image correlation (DIC) technique was used to analyze the digital images collected at different stages during loading of the model footing. The DIC results provide insights into the magnitude and extent of the vertical and horizontal displacement and maximum shear strain contours below and around the footing base during penetration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call