Abstract
This study proposes separation control investigation using a Dielectric Barrier Discharge (DBD) plasma actuator on a NACA0015 airfoil over a wide range of Reynolds numbers. The airfoil was a two dimensional NACA0015 wing model with chord length of 200mm. Reynolds numbers based on the chord length were ranged from 252,000 to 1,008,000. A plasma actuator was installed at the leading edge and driven with AC voltage. Burst mode (duty cycle) actuations, in which nondimensional burst frequency F+ was ranged in 0.1–30, were applied. Time-averaged pressure measurements were conducted with angles of attack from 14deg to 22deg. The results show that initial flow fields without an actuation can be classified into three types; 1) leading edge separation, 2) trailing edge separation, and 3) hysteresis condition between 1) and 2), and the effect of burst actuation is different for each above initial condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.