Abstract

When a wind turbine is struck by lightning, its blades are usually rotating. The effect of blade rotation on a turbine’s ability to trigger a lightning strike is unclear. Therefore, an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary. A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50% discharge voltage. Lightning discharge tests of a 1:30 scale wind turbine model with 2, 4, and 6 m air gaps were performed and the discharge process was observed. The experimental results demonstrated that when a 2 m air gap was used, the breakdown voltage increased as the blade speed was increased, but when the gap length was 4 m or longer, the trend was reversed and the breakdown voltage decreased. The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region, promotes upward leader development on the blade tip, and decreases the breakdown voltage. Thus, the blade rotation of a wind turbine increases its ability to trigger lightning strikes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.