Abstract

Unmanned aerial vehicle is becoming increasingly popular each year. Now, aeronautical researchers are focusing on size minimization of unmanned aerial vehicle, especially drone and micro aerial vehicle. The lift coefficient of micro aerial vehicle has wing dimension of 12 cm and mass of less than 7 g. In the present study, with the aid of 3D printer, polylactic acid material was used to develop the micro aerial vehicle structure for tandem wing arrangement. The materials for rigid wing skin and flexible wing skin were laminating film and latex membrane, respectively. The present work elaborates the lift coefficient profiles on rigid wing skin and flexible wing skin at wing flapping frequency of 11 Hz, three different Reynolds numbers of 14000, 19000 and 24000, and five different angles of attacks between 0° and 50°. According to the results obtained, the lift coefficient decreased as the Reynolds number increased. The lift coefficient increased up to 9 as the angle of attack increased from 0° to 50° at the Reynolds number of 14000 for flexible wing skin. The results also showed that the lift coefficient of flexible wing skin was higher than that of rigid wing skin at the attack angle of10° and below, except for the Reynolds number of 14000.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call