Abstract
Arc motion in a quenching chamber has a significant influence on switching performance in a low-voltage switching device (LVSD). A high-speed optical arc imaging system (AIS) has been used to investigate the influence of the design parameters of a quenching chamber on arc motion. Arc light intensity is transmitted to the photodiodes of the AIS through optical fibers during the switching process. The AIS and associated software enable the detailed arc motion to be tracked inside the chamber at an image sampling rate of 1 MHz. Since higher arc temperature leads to greater radiation, it is assumed that the arc light intensity measured by the AIS is related to the arc temperature. However, there has been a little empirical study of the correlation between the arc temperature and light intensity measured by the AIS. In this article, the relationship between the arc temperature and light intensity is investigated by measuring arc spectra and arc images. Arc spectra are captured by a spectrometer when the arc is ignited by copper wire in a narrow enclosed chamber, and they are used to calculate the arc temperature by the Boltzmann plot method. At the same time, the AIS records the arc images from points adjacent to the fiber of the arc spectrometer. It is found that the arc light intensity measured by the AIS is directly related to the arc temperature; the correlation between the fourth power of temperature and the light intensity is an approximately linear trend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.