Abstract

Photon spectra for 50 < E/sub ..gamma../ < 135 MeV have been measured from the radiative capture of stopped negative pions by the nuclides /sup 13/C, /sup 19/F, /sup 20/Ne, and /sup 90/Zr. The e/sup +/e/sup -/ pair spectrometer system used has resolution 850 keV fwhm and photon detection efficiency 5 x 10/sup -6/. The total radiative capture branching ratios measured are /sup 13/C (1.66 +- 0.25)%, /sup 19/F (2.40 +- 0.48)%, /sup 20/Ne (1.60 +- 0.24)%, and /sup 90/Zr (2.1 +- 0.5)%. The partial radiative capture branching ratios to four bound states and two resonances in /sup 20/F, and two bound states and three resonances in /sup 13/B have also been measured. The branching ratio for /sup 13/C(..pi../sup -/,..gamma..)/sup 13/B g.s. is (6.1 +- 1.2) x 10/sup -4/. Comparison of this result with the beta decay rate of /sup 13/B shows that (84 +- 16)% of the pion capture amplitude is accounted for by the Gamow-Teller matrix element. Further analysis suggests that much of the remaining strength is E2. The measured branching ratios to resonant states in /sup 13/C(..pi../sup -/,..gamma..)/sup 13/B are shown to be in agreement with detailed shell model calculations. The total single-particle strength in these transitions is shown to be approximately half as large as that of the T = 3/2 part of the E1 photoresonance (the Giant Dipole Resonance) in /sup 13/C. The branching ratio for /sup 20/Ne(..pi../sup -/,..gamma..)/sup 20/F (T = 1, J/sup ..pi../ = 1/sup +/, E/sub x/ = 1.06 MeV) is 0.91 +- 0.52).10/sup -4/. Comparison with the electroexcitation of the analog giant M1 state in /sup 20/Ne (11.24 MeV) shows that the M1 transition amplitude is less than (46 +- 14)% Gamow-Teller. This result is in agreement with detailed shell model calculations of the M1 transition. The photon spectrum for radiative pion capture from flight (reaction /sup 12/C(..pi../sup +/ T = 44 MeV, ..gamma.. at 90/sup 0/)) has been measured. 13 figures, 12 tables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.