Abstract
The Investigation of the two-phase flow patterns and their transitions during the condensation has gained increasing interest and importance from the well-known phenomenon that the heat transfer characteristics are strongly dependent on the flow patterns. Therefore, it is very important to study on which heat transfer enhancement approach is suitable for an individual flow pattern inside a condenser, so that an accurate heat transfer mechanism can be understood that is consistent with the flow patterns. The condensation heat transfer for R134a in the two kinds of in-tube three-dimensional (3-D) micro-fin tubes with different geometries is experimentally investigated. Based on the flow pattern observations, the flow patterns in the Soliman flow regime map are divided into two-flow regimes; one with the vapor-shear-dominant annular regime and the other with the gravitational-force-dominant stratified-wavy regime. The flow regime transition criterion between the annular regime and the stratified-wavy regime is at Fr equal to 2. In the annular regime, the heat transfer coefficients h of the two kinds of in-tube 3-D micro-fin tubes decreases as the vapor quality x decreases. The regressed condensation heat transfer correlation from the experimental data of the annular flow region is obtained. The dispersibility of the experimental data is inside the limits of ±25%. In the stratified-wavy regime, the average heat transfer coefficient h of the two kinds of in-tube 3-D micro-fin tubes increases as the mass flux increases and the number of micro fins in the 3-D micro-fin tube is not the controlling factor for the performance of a condensation heat transfer. The regressed condensation heat transfer correlation of the stratified-wavy flow regime is experimentally obtained. The dispersibility of the experimental data is inside the limits of ±22%. Combined with the criteria of flow pattern transitions, the correlations can be used for the design of a condenser with 3-D micro-fin tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.