Abstract

A comprehensive experimental study of the premixed ethylene/oxygen/argon flame at 2.667 kPa with a stoichiometric equivalence ratio (=1) was performed with the tunable synchrotron photoionization and molecular-beam sampling mass spectrometry techniques. The isomers of most observed species in the flame were unambiguously identified by measurements of the photoionization efficiency spectra, e.g. C3H4, C2H4O and C4H4. The mole fraction profiles of species up to C7H8 were measured by scanning the burner position at the selected photon energies near ionization thresholds, and the flame temperature profile was obtained by using Pt/Pt-13%Rh thermocouple. Compared with the previous studies, a lot of new flame species: C3H2, C3H3, C3H5, C2H6O, C4H2, C4H4, C4H6, C3H4O, C3H6O, C3H8O, C5H6, C4H8O and C7H8, were observed. A series of free radicals in the flame are detected to be CH3, C2H3, C2H5, HCO, C3H3 and C3H5. Based on the experimental work, a reduced reaction mechanism was developed including 40 species and 223 reactions. Modeling and measurements agree well for the major species and most intermediates. A detailed kinetic model is desired for this flame.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call