Abstract

A technology has been developed for the synthesis of arrays of oriented microropes and cocoon-like microstructures consisting of silicon oxide nanowires on a copper substrate with barrier layers of silicon dioxide, molybdenum, and tungsten. In experiments, a copper surface coated with a tungsten layer showed the best stability and technological applicability. Experiments were performed to study pool boiling heat transfer on copper heaters with nanomodified surfaces under saturation conditions. A comparison of the data on heat transfer enhancement on smooth and nanomodified hydrophilic and hydrophobic copper surfaces was made. Relatively high heat transfer coefficients were observed on copper surfaces with a tungsten barrier layer initially coated with microropes and micrococoons. The experiments showed that microropes from nanowires were not resistant to boiling; micrococoons from nanowires were more stable. Superhydrophobic surfaces were produced by hot-wire chemical vapor deposition (HWCVD) of fluoropolymer coatings on micrococoons. In the boiling experiments, the greatest heat transfer enhancement was obtained on such surfaces. The fluoropolymer coating was shown to lose its continuity. As a result, a random biphilic coating was formed and intense bubble boiling occurred in local hydrophobic areas of the fluoropolymer, resulting in heat transfer enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.