Abstract
Negative fluorine ions are exposed to a circularly polarized infrared laser pulse with a peak intensity on the order of 2.6 x 10(13) W/cm(2). A fundamental difference, as compared to the case of linearly polarized field, is found in the absence of any structure in the photoelectron spectrum that can be associated with the quantum interference effect. This observation is in accord with our recent predictions [S. Beiser, Phys. Rev. A 70, 011402 (2004)10.1103/Phys. Rev. A.70. 011402]. The experiment reveals that the length gauge is appropriate for the description of the field interaction in the frame of the strong field approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.