Abstract

Despite various studies on Co–Al–Fe ternary system, its phase equilibria are still in doubt. Phase equilibria, magnetic transition and bcc_A2/bcc_B2 order–disorder transformation at the Co–Fe-rich side of the Co–Al–Fe alloys were carefully investigated by means of electron probe microanalysis (EPMA), X-ray diffraction (XRD) and differential scanning calorimetry. The equilibrium phases and their compositions were determined by 18 alloy samples annealed at 900, 1000, 1100 and 1200 °C for 528, 336, 168 and 96 h, respectively, followed by quenching. However, by adopting the above traditional method, bcc_A2 and fcc_A1 phases are difficult to be distinguished through XRD analysis at room temperature due to the martensitic transformation of fcc_A1 phase during quenching. For this reason, high-temperature in situ XRD technique was utilized to correctly establish the phase relationships among bcc_A2, bcc_B2 and fcc_A1 phases. The phase transformation between bcc_A2 and B2 phases was determined to be second order instead of first order at temperatures higher than 900 °C. The equilibrium phases and compositions were further confirmed by fabricating 16 diffusion couples together with EPMA. Meanwhile, using three-dimensional differential scanning calorimetry method, bcc_A2/B2 and ferro-/paramagnetic transitions were determined with high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call