Abstract
The interest in Phase Change Materials (PCMs) has been continuously growing, since they were identified as a suitable way to store large quantities of thermal energy. Despite many PCMs being available on the market, almost all present a relatively low thermal conductivity, which limits the efficiency and the convenience of their use inside Latent Thermal Energy Storage (LTES) units. This paper proposes a novel method to overcome the low thermal conductivity drawback: additive manufacturing was used to realize three innovative 3D metallic periodic structures, with different base pore sizes (10, 20, and 40 mm) and constant porosity, to be filled with a suitable PCM. The samples were experimentally tested by analyzing the temperature field in a paraffin wax, which has a melting temperature of around 55 °C. Furthermore, several videos and images were taken during the charging (i.e. heating and melting) process, obtained by electrical heating (three heat fluxes corresponding to 10, 20, and 30 W were applied) and the discharging (i.e. solidification and cooling) process, where the heat was only rejected by natural convection with ambient still air. The coupling of PCMs and aluminum structures was demonstrated to enhance both the charging and the discharging processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.