Abstract

The paper presents a performance study of a lab-scale geothermal coaxial heat exchanger with an aqueous nanofluid with the nanoparticles of Al2O3. The concentration of nanoparticles was in the interval 2% wt. to 8% wt. We describe the nanofluid production method resulting in samples that are stable in static conditions for 50 days. The average size of the particles was 183 nm in−situ. We found that the thermal conductivity of the nanofluid may increase up to 13%, and the maximum apparent viscosity grows to 20% relative to the base fluid. The nanofluid was tested in a lab-scale geothermal heat exchanger. The best thermal performance of the heat exchanger with nanofluid was 9% higher than for the experiments with the base fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.