Abstract
This study aimed to investigate the moment carrying behavior of typical Tibetan timber beam-column joints under monotonic vertical static load and also evaluate the influence of length ratio of Gongmu to beam (LRGB) and dowels layout on the structural performance of the joint. Six full-scale specimens were fabricated with same construction but different Gongmu length and dowels position. The moment carrying performance of beam-column joints in terms of failure mode, moment resistance, and rotational stiffness of joints were obtained via monotonic loading tests. Test results indicated that all joints are characterized by compressive failure perpendicular to grain of Ludou. Additionally, it was found that greater LRGB leads to greater initial rotational stiffness and maximum moment of the joint by an increase of restraint length for beam end; however, offsetting dowels toward column resulted smaller stiffness and ultimate bending moment of joints, particularly, offsetting Beam-Gongmu dowels toward column changed the moment-rotation curve pattern of the beam-column joint, accompanied by a hardening stiffness at last phase. Furthermore, a simplified trilinear model was proposed to represent the moment-rotation relationship of the typical Tibetan timber beam-column joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.