Abstract
Ground-state properties of Nd3+ ion in the magnetically concentrated CsNd(MoO4)2 lattice of orthorhombic symmetry have been investigated at low temperatures. Magnetic-field dependence of magnetization measured at 5K in the magnetic field applied along the a, b, c crystallographic axes reflects slight deviations from the tetragonal symmetry of a local surrounding of Nd3+ ion. The analysis of the data performed within a model of an ideal paramagnet provided g-factor values, ga=3.08, gb=1.90, and gc=1.95. Angular dependence of the electron paramagnetic resonance spectra studied at temperature 2.5K was investigated in the ab, ac and bc planes. The spectra are dominated by a broad asymmetric line which is strongly deformed due to the formation of a fine structure ascribed to the presence of nonequivalent Nd3+ sites. The analysis of the spectra confirmed the easy-axis character of a magnetic anisotropy. In addition, nontrivial tilting of the local anisotropy axes from the crystallographic axes was revealed, indicating lowering of crystal symmetry at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.