Abstract

Nowadays, the use of magnesium and its alloys for transport applications is based on the combination of high mechanical properties and low density. In general, the machinability of these materials is considered to be good. Nevertheless, it has been reported that the machining of these alloys involves some critical problems regarding their tendency to be flammable at high temperatures and consequently, there is a risk of chip ignition in the working area during the process. This fact is especially critical when the size of chips is reduced. In this study, the influence of cutting conditions on surface roughness, in terms of Ra, obtained by drilling of magnesium alloy (AZ91D-F) was carried out. A factorial design 24 was employed for the planning of the drilling tests. The factors considered were the feed rate (0.05 and 0.2 mm/r), cutting speed, 40 and 60 m/min, the type of tool, in particular, the point angle of 118º and 135º, and the cooling system, Dry conditions and MQL (Minimum Quantity Lubrication) system. As main conclusions it can be affirmed that improved surface roughness is obtained with the cutting conditions selected in this study. Furthermore, at 0.05 mm/r and 40 m/min the use of tools with a point angle of 135º provides lower values of Ra than the tool of 118º point angle. Slightly lower values of Ra are obtained with tools of 118º point angle at 0.2 mm/r and 60 m/min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.