Abstract
The electrical and spectral characteristics of a dielectric barrier discharge (DBD) are experimentally investigated in a sealed off coaxial cylinder filled with nitrogen at a pressure of 10 mbar. The discharge is a transient diffused glow at low frequency alternating voltage (60 Hz) and changes to a filamentary mode at high frequency alternating voltage (35 kHz). In case of pulsed voltage, the discharge is always transient diffused glow at any frequency. The intensity of a second positive system (SPS) of the nitrogen molecule has been also measured to characterize the discharge excitation. The effective vibrational temperature is estimated from the SPS vibrational band, Δv = -2. It is concluded that the intensity of the SPS of the nitrogen and the effective vibrational temperature depends upon the reduced electric field and the energy consumed per cycle by the device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.