Abstract

Forced longitudinal librations are oscillatory perturbations of the rotation rate of a planet resulting from a gravitational coupling with orbital partners. In the present study we report the first experimental evidence that a librating cylindrical container can viscously drive mean azimuthal flows in the liquid interior, hereafter referred to as zonal flows. Using a novel laser Doppler velocimetry system, the current work extends upon the study of libration-driven flows by Noir et al. (2009). We investigate the different mechanisms underlying the zonal flow generation. It is found that zonal flows in the interior result primarily from non-linearities in the Ekman boundary layer. Furthermore, the zonal flow scales as the square of the libration amplitude and is independent of the Ekman number. This scaling implies that forced longitudinal libration in an axisymmetric container (purely viscous coupling) will drive unobservably small zonal flows at planetary conditions. Thus, purely viscous librational coupling will not generate significant energy dissipation in a planetary fluid layer. It follows that any observed phase lag between the gravitational forcing and the orbital response of a planet requires non-viscous coupling mechanisms to account for the energy dissipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.