Abstract

An experiment has been conducted to study stator/rotor disc cavity leakage flow on the platform of a highly loaded stationary linear blade cascade. The linear cascade consists of a scaled-up model of the high-pressure turbine blades of an E3 (Energy efficient engine) and leakage slot models installed under the platform. Experiments have been conducted to investigate the effect of the slot injection angle, leakage flow rates, distance between the leading edge of the blade and the slot, and spacing of the blades. The film-cooling effectiveness was measured by pressure sensitive paint (PSP), and the temperature fields and flow fields were investigated using laser-induced fluorescence (LIF) and particle image velocimetry (PIV), respectively. It was observed from the experiments that the leakage flow covered the surface of the blade platform when the distance between the leading edge and the slot was zero; however, with increasing distance, the horseshoe vortex dominates near the junction of the blade leading edge, and the leakage flow could not cover the region. It was also found that the leakage flow has an effect that promotes the formation of the horseshoe vortex for some experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.