Abstract

Influence of laser fluence and pulse duration on the morphology and the internal structure of plasma induced by infrared nanosecond laser pulse on an aluminum target placed in an argon ambient gas of one atmosphere pressure was experimentally studied. Dual-wavelength differential spectroscopic imaging was used in the experiment, which allowed observing the detailed structure inside of the ablation plume with distributions of species evaporated from the target as well as contributed by the ambient gas. Different regimes of post-ablation interaction were investigated using different laser fluences and pulse durations. We demonstrate in particular that plasma shielding due to various species localized in different zones inside of the plume leads to different morphologies and internal structures of the plasma. At moderate fluence, the plasma shielding due to the ablation vapor localized in the central part of the plume leads to its nearly spherical expansion with a layered structure of the distribution of different species. At higher fluence, the plasma shielding becomes strongly contributed by ionized ambient gas localized in the propagation front of the plume. An elongated morphology of the plume is observed with a zone of mixing between different species evaporated from the target or contributed by the ambient gas. Finally with extremely strong plasma shielding by ionized ambient gas in the case of a long duration pulse at high fluence, a delayed evaporation from the target is observed due to the ejection of melted material by splashing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call