Abstract

The linear and geometrically nonlinear (large amplitude) dynamical response of a thin plate in contact with water on one or both sides has been experimentally studied, considering different filling levels. The free liquid surface is free to slosh and the water is delimited by practically rigid walls, except for the thin plate. An experimental method for monitoring and measuring the free surface waves of the fluid has been also used in order to analyze the behavior of the liquid free surface during the nonlinear vibration of the plate forced by harmonic excitation. The plate deflection due to hydrostatic pressure plays a significant role in changing the plate nonlinearity, but tests with liquid on both sides eliminating this effect have been also presented. For excitation in the frequency neighborhood of the fundamental mode of the plate, the oscillation of the free surface of the liquid is characterized by a very large 1/2-subharmonic component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.