Abstract

This paper describes a non-invasive, non-destructive inverse measurement method that allows one to determine heat transfer coefficients in internal passages of real turbine blades experimentally. For this purpose, a test rig with a fast responding heater was designed to fulfill the requirement of a sudden increase in the air temperature within the internal cooling passages. The outer surface temperatures of the specimen were measured using an infrared camera. To suggest the spatial distribution of the internal heat transfer coefficients from the transient characteristics of the outside surface temperature the inverse heat transfer problem was solved. Differing from former studies which made a thin wall assumption, the conduction inside a finite wall was modelled. Based on a one-dimensional forward solution the best fitting optimization method, the Levenberg-Marquardt algorithm, was chosen. This was verified with artificial data including random noise with positive results. Experimental data were measured for a rectangular H/W = 1:4 aspect ratio channel made of stainless steel with parallel 90° and 45° ribs at Reynolds numbers from 25,000 to 80,000. Results of 90° ribs were compared with simultaneously acquired data using the transient liquid crystal technique. Furthermore the influence of Reynolds number on pitch averaged heat transfer results were evaluated for both rib configurations. These results based on infrared data were compared with earlier studies. It is concluded that the presented experimental measurement method using the transient inverse method could be used to quantitatively determine heat transfer coefficients in internal passages of real turbine blades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call