Abstract

Concentrically Braced Frames (CBFs) are among the most commonly used lateral resisting systems utilized in the construction of steel structures due to their rigidity, low lateral displacement and ease of implementation. However, the lack of ductility due to the buckling that occurs in the bracing elements before yielding is their main disadvantage. This study presents an innovative Composite Buckling Restrained Fuse (CBRF) to be used as a bracing segment in concentrically braced frames that improves the ductility and eliminates premature buckling. The proposed CBRF with relatively small dimensions is a hysteretic damper consisting of thin steel plate core and extra tensile elements embedded in a composite encasement. Two CBRF samples are designed and tested experimentally. The results indicate that the proposed structural fuse has a ductile behaviour with high energy absorption and sufficient strength along with a reasonably stable hysteretic response under cyclic load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.