Abstract

The objective of this work is to examine the detailed heat transfer coefficient distributions over a ribbed surface under impingement of in-line and staggered jet arrays by using a liquid crystal thermograph technique. In-line and staggered jet arrays with different exit flow orientations were considered. Three jet-to-target spacing Z of 3, 6 and 9 with in-line and staggered jet arrays were considered at jet Reynolds numbers of Re = 1500, 3000 and 4500 with three different exit flow orientations. In addition, the effects of rib configuration on the heat transfer distributions were discussed in detail. Results show that the local heat transfer rates over the ribbed surface are characterized by obvious periodic-type variation of Nusselt number distributions. The downstream peaks are diminished for increasing cross flow effect. Compared to the results without ribs, the heat transfer over the ribbed surface may be enhanced or retarded. Whereas, among the test angled-rib arrangements, the best heat transfer performance is obtained with a surface with 45° angled ribs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.