Abstract

<p style="text-align:justify;text-indent:36.0pt;"><span style="font-family:"Times New Roman","serif";font-size:12pt;line-height:200%;">The main objective of this experiment is to reduce the major pollutants NO and particulate matter that is emitted by diesel engines to avoid green house gases. The critical part is that   reducing both the NO and particulate matter simultaneously is not possible. If we try to reduce PM, NO increases     and vice versa. Based on this concept in this research, hydrogen is used in addition to diesel, as hydrogen represents a good alternative fuel to reduce emissions. Some experimental aspects with respect to hydrogen flow 0.024, 0.041, 0.08 and 0.09 kg per hour along with diesel fuel. The amount of    hydrogen injected into the chamber will be compensated by reducing the diesel quantity 1.081, 1.030, 0.94 and 0.866 kg per hour at one fourth, half , three fourth and full load respectively, at a speed of 1500 rpm water cooling. The engine is equipped with  Engine Soft software that captures  and stores the data. In the first phase, the experiment was conducted using diesel fuel and in the second phase the diesel fuel and hydrogen at different flow rates were used to enhance the combustion. At full load for 0.041 kg per hour, the gas of hydrogen CO was reduced by 37.5%, HC by 60%,NO by 22.45%. CO<sub>2   </sub>was reduced by 45.8% at 0.08 kg per hour of hydrogen. At 0.09 kg per hour of hydrogen injection, the particulate matter was decreased by 79.6%. At full load and for 0.09 kg per hour flow rate, the brake and indicated thermal efficiency was increased by 33.4% and 32.4%, respectively.The main objective of this experiment is to reduce the major pollutants NO and particulate matter that is emitted by diesel engines to avoid green house gases. The critical part is that   reducing both the NO and particulate matter simultaneously is not possible. If we try to reduce PM, NO increases     and vice versa. Based on this concept in this research, hydrogen is used in addition to diesel, as hydrogen represents a good alternative fuel to reduce emissions. Some experimental aspects with respect to hydrogen flow 0.024, 0.041, 0.08 and 0.09 kg per hour along with diesel fuel. The amount of    hydrogen injected into the chamber will be compensated by reducing the diesel quantity 1.081, 1.030, 0.94 and 0.866 kg per hour at one fourth, half , three fourth and full load respectively, at a speed of 1500 rpm water cooling. The engine is equipped with  Engine Soft software that captures  and stores the data. In the first phase, the experiment was conducted using diesel fuel and in the second phase the diesel fuel and hydrogen at different flow rates were used to enhance the combustion. At full load for 0.041 kg per hour, the gas of hydrogen CO was reduced by 37.5%, HC by 60%,NO by 22.45%. CO<sub>2   </sub>was reduced by 45.8% at 0.08 kg per hour of hydrogen. At 0.09 kg per hour of hydrogen injection, the particulate matter was decreased by 79.6%. At full load and for 0.09 kg per hour flow rate, the brake and indicated thermal efficiency was increased by 33.4% and 32.4%, respectively.</span></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.