Abstract

In this paper, high-speed milling experiments on silicon carbide particle reinforced aluminum matrix (SiCp/Al) composites with higher volume fraction and larger particles were carried out using polycrystalline diamond (PCD) tools at dry and wet machining conditions. For comparison, a TiC-based cermet tool was also used in milling the same workpiece material at very low speed. Worn PCD and cermet tools were measured and extensively characterized by scanning electron microscopy at different machining conditions. Furthermore, the effect of cutting distance on milling force and surface roughness were also investigated. The results showed that the main tool wear mechanism in machining of this type of material was abrasion on the flank face, and it was verified that the TiC-based cermet tool was not suitable for machining SiCp/Al composites with higher volume fraction and larger particles due to the heavy abrasive nature of reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.