Abstract

Droplets impact on surfaces exist widely in industrial equipments, such as spraying cooling, ink jet printing, oil drops impact on walls in combustion chamber, brine droplets impact on heat transfer tubes in horizontal-tube falling film evaporators etc. In particular, for the droplets impinging on heated surfaces, the contact scale and the heat transfer flux affect the cooling of the hot surfaces greatly. In this work, evaporation processes of water and ethanol droplets impact on a heated surface are observed using a high-speed digital camera with a capacity of 106 frames per second. The corresponding evaporation parameters including the contact diameter, the droplet height, the contact angle, and heat flux are analyzed. The initial liquid temperature keeps constant at 20 ℃, and the initial surface temperature varies in the range of 68-126 ℃. Diameters of single water droplets and ethanol droplets are 2.07 and 1.64 mm, respectively. The impact Weber number of water droplets ranges from 2 to 44 while that of ethanol droplets ranges from 3 to 88. The present results show that due to the coupled effects of gravity, surface tension, fluid flow and evaporation processes, the height of water droplets reduces continuously while the contact diameter almost does not change during the most part of evaporation time. In the later stage of evaporation, the contact diameter, height and contact angle of water droplets oscillate, mainly because of droplet retraction. The critical contact angle for water droplets retraction is in the range of 4-8. The contact angle of ethanol droplets first reduces and then remains constant, while the contact diameter and the height decrease continuously. The droplet evaporation time depends on liquid properties and the surface temperature, and the Weber number effect is minor. The evaporation time decreases with the increase in the surface temperature. At the same time, with increasing surface temperature, the ratio between the sensible heat and the total heat increases, and this part of heat cannot be neglected from the total heat transfer calculation. Based on the present experimental conditions, the average heat flux for the water droplets ranges from 0.014 to 0.110 Wmm-2 in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call