Abstract

In this experimental study, we address transport processes in a mixed convective flow over a heated wavy surface. Therefore, we combine digital particle image velocimetry (DPIV) and two-color planar laser induced fluorescence (PLIF) to simultaneously measure the velocity and temperature field. For this, we propose to use the dye combination Rhodamine B and Rhodamine 110, both excited with the Nd:YAG laser also used for the PIV measurements. We investigate the influence of mixed convection over a wavy surface on the velocity field, turbulence statistics, the temperature field and the heat flux. By computing these quantities we find a correlation between the maximum in the Reynolds stress profiles and the components of the heat flux vector, thus regions of maximum momentum and scalar transport coincide. In addition, we apply a proper orthogonal decomposition (POD) to extract the most dominant flow structures in a measurement plane above the wavy surface. This first POD mode is identified as streamwise-oriented, counter-rotating vortices whose spanwise scaling is also correlated with the maximum of heat flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.