Abstract

The pressurized bubbling fluidized bed shows great advantage in retreating municipal solid waste because it could effectively capture CO2 and enhance the reaction rate of the process of combustion and gasification. In the present work, fluidization characteristics of Geldart-D particles at elevated pressure were experimentally investigated, such as flow pattern, pressure drop, minimum fluidization gas velocity. At the same fluidization gas velocity, as elevating operating pressure, the fluidization of Geldart-D particles became more intense, the bubbles got larger, the standard deviation and the power density of dominant frequency of the pressure drop signal increased. While, under the same fluidization number, as increasing operating pressure, the fluidization of Geldart-D particles became smoother, the bubble size decreased, both the standard deviation and the power density of dominant frequency of the pressure drop signal decreased. It seems that, under elevated pressure, the fluidization behavior of Geldart-D particles would transition to that of Geldart-B particles. Finally, the minimum fluidization velocity of the Geldart-D particles was found decreased with the increase of the operating pressure. A new correlation for the prediction of the minimum fluidization velocity of Geldart-D particles at elevated pressure was also formulated based on the present experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call