Abstract

This contribution presents results from a laboratory study investigating the fluid (gas/water) transport properties in the matrix system of the Scandinavian Alum Shale. The maturity of the organic matter of the shale samples ranged between 0.5 and 2.4% vitrinite reflectance (VRr). Gas (He, Ar, CH4) and water flow properties were determined at effective stresses ranging between 5 and 30 MPa and a temperature of 45 °C. The effects of different controlling factors/parameters on the fluid conductivity including permeating fluid, moisture content, anisotropy, heterogeneity, effective stress, pore pressure, and load cycling were analyzed and discussed. Pore volume measurements by helium expansion were conducted under controlled “in situ” effective stress conditions on a limited number of plugs drilled parallel and perpendicular to bedding.For Alum Shale the intrinsic permeability coefficients measured parallel and perpendicular to bedding (6·10−22–8·10−18 m2) were within the range previously reported for other shales and mudstones. Permeability coefficients were strongly dependent on permeating fluid, moisture content, anisotropy, effective stress and other sample-to-sample variations. The intrinsic/absolute permeabilities measured with helium were consistently, higher (up to five times) than those measured with argon and methane. Permeability coefficients (He, CH4) measured on a dry sample were up to six times higher than those measured on an “as-received” sample, depending on effective stress. The effect of moisture on measured permeability coefficients became more significant as effective stress increased. Permeability coefficients (He, CH4) measured parallel to bedding were up to more than one order of magnitude higher than those measured perpendicular to bedding. Parallel to bedding, all samples showed a nonlinear reduction in permeability with increasing effective stress (5–30 MPa). The stress dependence of permeability could be well described by an exponential relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.